gust locks, must be designed to withstand the limit load conditions that exist when the airplane is tied down and that result from wind speeds of up to 65 knots horizontally from any direction. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13089, Aug. 13, 1969; Amdt. 23–45, 58 FR 42160, Aug. 6, 1993; Amdt. 23–48, 61 FR 5145, Feb. 9, 1996] HORIZONTAL STABILIZING AND BALANCING SURFACES # §23.421 Balancing loads. - (a) A horizontal surface balancing load is a load necessary to maintain equilibrium in any specified flight condition with no pitching acceleration. - (b) Horizontal balancing surfaces must be designed for the balancing loads occurring at any point on the limit maneuvering envelope and in the flap conditions specified in §23.345. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13089, Aug. 13, 1969; Amdt. 23–42, 56 FR 352, Jan. 3, 1991] # §23.423 Maneuvering loads. Each horizontal surface and its supporting structure, and the main wing of a canard or tandem wing configuration, if that surface has pitch control, must be designed for the maneuvering loads imposed by the following conditions: - (a) A sudden movement of the pitching control, at the speed V_A , to the maximum aft movement, and the maximum forward movement, as limited by the control stops, or pilot effort, whichever is critical. - (b) A sudden aft movement of the pitching control at speeds above V_A , followed by a forward movement of the pitching control resulting in the following combinations of normal and angular acceleration: | Condition | Normal
accelera-
tion (n) | Angular acceleration (radian/sec ₂) | |--|---------------------------------|--| | Nose-up pitching
Nose-down pitching | 1.0
n _m | $^{+39n_{\rm m} \div V \times (n_{\rm m}-1.5)}_{-39n_{\rm m} \div V \times (n_{\rm m}-1.5)}$ | where— - (1) n_m =positive limit maneuvering load factor used in the design of the airplane; and - (2) V=initial speed in knots. The conditions in this paragraph involve loads corresponding to the loads that may occur in a "checked maneuver" (a maneuver in which the pitching control is suddenly displaced in one direction and then suddenly moved in the opposite direction). The deflections and timing of the "checked maneuver" must avoid exceeding the limit maneuvering load factor. The total horizontal surface load for both nose-up and nosedown pitching conditions is the sum of the balancing loads at V and the specified value of the normal load factor n, plus the maneuvering load increment due to the specified value of the angular acceleration. [Amdt. 23–42, 56 FR 353, Jan. 3, 1991; 56 FR 5455, Feb. 11, 1991] ### § 23.425 Gust loads. - (a) Each horizontal surface, other than a main wing, must be designed for loads resulting from— - (1) Gust velocities specified in §23.333(c) with flaps retracted; and - (2) Positive and negative gusts of 25 f.p.s. nominal intensity at V_F corresponding to the flight conditions specified in §23.345(a)(2). - (b) [Reserved] - (c) When determining the total load on the horizontal surfaces for the conditions specified in paragraph (a) of this section, the initial balancing loads for steady unaccelerated flight at the pertinent design speeds V_F , V_C , and V_D must first be determined. The incremental load resulting from the gusts must be added to the initial balancing load to obtain the total load. - (d) In the absence of a more rational analysis, the incremental load due to the gust must be computed as follows only on airplane configurations with aft-mounted, horizontal surfaces, unless its use elsewhere is shown to be conservative: $$\Delta L_{ht} = \frac{K_g U_{de} V a_{ht} S_{ht}}{498} \left(1 - \frac{d\varepsilon}{d\alpha} \right)$$ where- $\begin{array}{l} \Delta L_{ht} \!\!=\!\! \text{Incremental horizontal tailload (lbs.);} \\ K_g \!\!=\!\! \text{Gust alleviation factor defined in §23.341;} \\ U_{de} \!\!=\!\! \text{Derived gust velocity (f.p.s.);} \end{array}$ V=Airplane equivalent speed (knots); a_{ht}=Slope of aft horizontal lift curve (per radian) # § 23.427 S_{ht} =Area of aft horizontal lift surface (ft²); and $$\left(1 - \frac{d\varepsilon}{d\alpha}\right)$$ = Downwash factor [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13089 Aug. 13, 1969; Amdt. 23–42, 56 FR 353, Jan. 3, 1991] # §23.427 Unsymmetrical loads. - (a) Horizontal surfaces other than main wing and their supporting structure must be designed for unsymmetrical loads arising from yawing and slipstream effects, in combination with the loads prescribed for the flight conditions set forth in §\$23.421 through 23.425 - (b) In the absence of more rational data for airplanes that are conventional in regard to location of engines, wings, horizontal surfaces other than main wing, and fuselage shape: - (1) 100 percent of the maximum loading from the symmetrical flight conditions may be assumed on the surface on one side of the plane of symmetry; and - (2) The following percentage of that loading must be applied to the opposite side: Percent=100-10 (n-1), where n is the specified positive maneuvering load factor, but this value may not be more than 80 percent. (c) For airplanes that are not conventional (such as airplanes with horizontal surfaces other than main wing having appreciable dihedral or supported by the vertical tail surfaces) the surfaces and supporting structures must be designed for combined vertical and horizontal surface loads resulting from each prescribed flight condition taken separately. [Amdt. 23–14, 38 FR 31820, Nov. 19, 1973, as amended by Amdt. 23–42, 56 FR 353, Jan. 3, 1991] ### VERTICAL SURFACES # §23.441 Maneuvering loads. - (a) At speeds up to V_A , the vertical surfaces must be designed to withstand the following conditions. In computing the loads, the yawing velocity may be assumed to be zero: - (1) With the airplane in unaccelerated flight at zero yaw, it is assumed that the rudder control is suddenly displaced to the maximum deflection, as limited by the control stops or by limit pilot forces. - (2) With the rudder deflected as specified in paragraph (a)(1) of this section, it is assumed that the airplane yaws to the overswing sideslip angle. In lieu of a rational analysis, an overswing angle equal to 1.5 times the static sideslip angle of paragraph (a)(3) of this section may be assumed. - (3) A yaw angle of 15 degrees with the rudder control maintained in the neutral position (except as limited by pilot strength). - (b) For commuter category airplanes, the loads imposed by the following additional maneuver must be substantiated at speeds from $V_{\rm A}$ to $V_{\rm D}/M_{\rm D}.$ When computing the tail loads— - (1) The airplane must be yawed to the largest attainable steady state sideslip angle, with the rudder at maximum deflection caused by any one of the following: - (i) Control surface stops; - (ii) Maximum available booster effort: - (iii) Maximum pilot rudder force as shown below: